header images

Output
and
Outcome

Asynchronous sampling and reconstruction of sparse signals

September 1, 2012

Asynchronous signal processing is an appropriate low-power approach for the processing of bursty signals typical in biomedical applications and sensing networks. Different from the synchronous processing, based on the Shannon- Nyquist sampling theory, asynchronous processing is free of aliasing constrains and quantization error, while allowing continuous-time processing. In this paper we connect level crossing sampling with time-encoding using asynchronous sigma delta modulators, to develop an asynchronous decomposition procedure similar to the Haar transform wavelet decomposition. Our procedure provides a way to reconstruct bounded signals, not necessarily band-limited, from related zero-crossings, and it is especially applicable to decompose sparse signals in time and to denoise them. Actual and synthetic signals are used to illustrate the advantages of the decomposer.

DOI: TBA

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ece
Innovative Medical Engineering Developments Laboratory
Department of Electrical and Computer Engineering
Swanson School of Engineering
University of Pittsburgh